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WHY I AM N O T  AN O B J E C T I V E  B A Y E S I A N ;  S O M E  

R E F L E C T I O N S  P R O M P T E D  BY R O S E N K R A N T Z  

Roger Rosenkrantz's recent work* gives the reader snapshots, taken through 
the eye of a Bayesian camera, of one philosopher's vision that major problems 
in the philosophy of science can be solved by the machinery of contemporary 
probability theory and statistics. It is my intent here to review the philosophi- 
cal foundations of Rosenkrantz's project, but first let me give an overview 
of his book. 

The text is divided into three principal sections: Informative Inference; 

Scientific Method; and Statistical Decision. The first, and in my opinion 
most important part of the book provides the basis for the rest of the work. 
Quoting from the dust jacket, I can summarize Rosenkrantz's positon by 
stating that, "The author holds that men in possession of the same data 
should agree in their probabilities, arguing that objective posterior distri- 
butions are obtainable by conditionalizing on an 'informationless' prior". 
It is this objective Bayesianism which is the subject of my examination in II. 

The second part of the book has simplicity as its subject and Rosenkrantz 
focuses on his own measure of simplicity of a theory. He argues that this 
measure gives a (quantitative) scale for weighing the complexity of a theory 
against its supporting data, and that this comparison has value for judging 
the merits of one theory against another, i.e., it is an inter-theoretic measure 
as well. The final third of Inference, Method and Decision provides a some- 
what hurried tour of a sample of topics which are part of the contemporary 
debate between Bayesians and non-Bayesians. Rosenkrantz reviews the 
standing of familiar orthodox statistical techniques and assesses their validity 
subject to the inductive principles set out in the earlier parts of the book. 
A closing chapter touches on acceptance and cognitive decisions. 

Since it is my purpose in this article to review the major theme of the 
book, my emphasis will be on the opening section: Informative Inference. 
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Let me summarize my findings. I claim that the twin inductive principles 
which form the core of objective Bayesianism are unacceptable. Invariance 
(due to H. Jeffreys) and the rule of maximum entropy (due to E. Jaynes) are 
each incompatible with conditionalization (Bayes' theorem). I argue that the 
former principle leads to inconsistent representations of 'ignorance', i.e., so- 
called informationless priors generated by the invariance principle are at odds 
with Bayes' theorem. I claim that Jaynes' rule of max/m/zing the entropy of 
a distribution to represent 'partial information' is likewise unacceptable. It 
leads to precise probability distributions that are excessively aprioristic, con- 
taining more information than the evidence generating them allows. Again, the 
conflict is with Bayes' theorem. 

Before giving the supporting arguments to these claims, I wish to express 
my opinion about the latter parts of this book. I am troubled by Professor 
Rosenkrantz's treatment of simplicity. It is not just that his measure (average 
likelihood) produces numbers which do not square with my intuitions about 
simplicity (after all, simplicity is far from an intuitive notion), but I am 
unable to follow the arguments leading up to this choice of measure. 

In particular, I do not understand Rosenkrantz' concept of 'sample cover- 
age', which determines the range of possible experimental outcomes that 
support the theory in question. Loosely, sample coverage is thought to be 
inversely related to the complexity of a theory, e.g., a composite statistical 
hypothesis with an 'adjustable' parameter is thought to be more complex 
than an instance of it, that is more complex than a simple statistical hypo- 
thesis obtained by fixing the 'adjustable' parameter. But what is the sense of 
saying that the composite hypothesis has greater sample coverage? 1 How is 
it that the (simple) hypothesis that this is a fair coin has less sample coverage 
than the (composite) hypothesis that the coin is of unknown bias? In a long 
run of, say, 101~176 flips any possible outcome is consistent with either posit. 2 

Of course, in a comparison between the two hypotheses based on a par- 
ticular experimental outcome, the average likelihood of the composite hypo- 
thesis is an important quantity since, assuming the Bayesian principle of 
conditionalization (discussed in detail in the next section), we see that it 
summarizes the effect of the evidence on the belief state about the hypo- 
thesis) However, I do not understand how the average likelihood reports 
the trade-off between the complexity of the theory and its coverage because: 
(i) I fail to see exactly what Rosenkrantz has in mind by 'sample coverage'; 



WHY I AM NOT AN OBJECTIVE BAYESIAN 415 

and (ii) the average likelihood is based on a particular experimental outcome, 
not on the set o f  possible outcomes (which seems to be the crucial ingredient 
in a discussion of coverage). 

The final third of the book: Statistical Decision contains a wealth of 
numerical applications which introduce the reader to an impressive range of 
statistical and philosophical problems. Moreover, the pedagogical technique 
of showing applications and illustrations breathes life in the subject by giving 
us an understanding-through-doing instead of mere theoretical accounts of 
the differences in alternative approaches. The analysis is not without faults, 
however. A case in point is the discussion of the 'optional stopping' problem, 
an historically important topic which served as one of the first examples of 
serious conflict between Bayesian and orthodox statistics. Rosenkrantz 
attempts a novel interpretation which compromises the traditional Bayesian 
solution. Though his motive for reconciliation is noble indeed, a technical 
blunder reduces the import of Rosenkrantz's claims which, I feet, must 
be withdrawn. 4 

This book has wide scope. Professor Rosenkrantz's goal is the application 
of a version of Bayesianism, objective Bayesianism, to philosophy of science. 
His pursuit is aggressive and sincere; yet I criticize him because he has built 
his project on quicksand and I think he must share the responsibility for the 
adequacy of the foundations. It is to the discussion of the foundations of 
objective Bayesianism that I now turn. 

II 

There are three postulates which form the heart of all Bayesian programs. First 

is that an agents' beliefs (at a time) are represented by some probability func- 
tion, p ( ) .  This is usually called the coherence principle. Second is that the 
agent's commitments to changes in belief when new evidence is acquired are 
governed by Bayes' theorem. In particularl ifpK ( ) represents the current state 
(where 'K' denotes the consistent, deductively closed knowledge base of the 
state) and if PK*( ) represents the hypothetical belief state arrived at by 
adding to K the new evidence d (that is, if 'K*' denotes the deductive conse- 
quences of K & d), then PK* ( ) = PK(/d) ,  which by Bayes' theorem satisfies: 

PK( /d )  o: pK(d/ ) '  PK() .  
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Since the updated beliefs are represented by the original probability function 
conditionalized on the new evidence, i.e., PK.( ) =  PK(/d) ,  the principle 
is called conditionalization. Because of the central role Bayes' theorem plays 
in regulating conditional probabilities the program takes its name from this 
theorem. Finally, the total evidence principle assures that the probability 
function PK( ) takes all (and only) the agent's knowledge K for its base. 

For the purposes of this discussion we may contrast two extremes of 
Bayesianism. At one pole is subjectivism (as defended by Savage and de 
Finetti), which insists that the inductive logic has no additional postulates 
limiting the acceptable belief states, s Any probability function satisfying 
these three postulates is admissible and the corresponding belief state reason- 
able. At the other pole is objectivism (as defended by Jeffreys and Jaynes), 
which argues for a uniquely admissible probability function, P K ( ) ,  given a 
knowledge state K. 6 The probability function is objective because it is agent- 
invariant once the knowledge base K is fixed. Of course, objective Bayesianism 
requires extra inductive postulates to identify the uniquely admissible prob- 
ability function, P K ( ) ,  and our job is to investigate the compatibility of the 
additional inductive principles with the original three (above). 

Before rushing to this task, let us consider whether the fundamental 
assumption of objective Bayesianism is philosophically plausible. There are, I 
find, two motivating sources of objectivism. First, if Bayesianism is to make 
sense of traditional statistical inference then only specific 'ignorance' prob- 
abilities will work. For example, if h is some interval of simple statistical 
hypotheses, i.e., if h is a composite interval hypothesis, then for a Bayesian 
to translate a traditional 95% confidence interval about h, given typical data 
d, into a posterior probability of the kind p(h/d) = 0.95, then a privileged 
'ignorance' probability p(h) is required. This 'informationless' probability 
captures the ignorance, prior to observing the evidence d, the agent professes 
about the truth of h. Of course, in setting out to reconstruct rational science 
with Bayesian tools, Rosenkrantz is committed to reconstructing a fair part 
of traditional statistical inference as well. 

Second, for these Bayesians who recognize a non-epistemic, observer 
independent probability, call it chance, special conditional probability 
(where knowledge of chances is part of the corpus of knowledge) for corre- 
sponding observable random variables is invariant. For example, given that 
this is a fair coin (a chance statement), the probability is 0.5 that the next 
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flips lands head-up. This instance of a simple direct probability shows how 
the knowledge base may f'LX the admissible belief state through relations 
other than mere deductive consequences. As we note shortly, each of these 
heuristics is central to the constructive strategy employed by the objectivists 
for determining precisely which probability is the admissible one, and in 
particular for determining 'informationless' probability. 

As early as 1939 Sir Harold Jeffreys argued for objectivism. 7 He proposed 
a major advance over his 1939 formulation in his 1948 theory of Invariants. s 
Let me review Jeffreys' program since it is adopted (with only minor alter- 
ation) by Jaynes and Rosenkrantz. Suppose we are interested in some quantity 
m which, given our current knowledge, is limited to some continuous range 
M of real values. We parameterize this set M of possibilities by choosing 
some sufficiently smooth real-valued function, f, of m, with range O, i.e., 
f(m) = 0 E O; where 0 becomes the parameter of interest and | its associated 
parameter space of possible values. For instance f m a y  be the trivial function 
which maps the quantity m into its dimension-free magnitude. How are we to 
represent our initial ignorance about m in a probability function if all we 
know is that 0 E O? 

Jeffreys' earliest solution was to consider the parameter space G and to fix 
an 'ignorance' distribution for 0 based on simple mathematical properties 
of ~.9 For example, if the parameter space is the whole real line, (-- 0% + oo), 
then an (improper) uniform distribution is adopted. 1~ If the parameter space 
is the positive half of the real line, (0, + oo), then an (improper) density 
proportional to 1/0 is adopted. Jeffreys argued, aprioristically, that the 
advantage of these selections is that they are consistent over an important 
family of alternative parameterizations. Thus, the rule for positive parameters 
leads to the same ignorance distribution regardless of which parametrization 
in the family O r (r a real) is chosen for the function f. Similarly, the rule for 
real-valued parameters (the uniform distribution)leads to the same probability 
function representing ignorance for any linear transformation of the par- 
ameter. Moreover, the two rules are mutually consistent when a positive- 
valued parameter 0 is transformed to a real-valued one by taking logarithms. 
That is an (improper) density proportional to 1/0 is equivalent to an 
(improper) distribution uniform over In (0), for 0 > 0. 

Certainly these minimal consistency results fail to justify Jeffreys' two 
rules for picking 'informationJess' prior probability functions. Nor do they 
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solve the more realistic problems that arise when M is bounded at both 

termini, or when M is more than one-dimensional. For instance, if m is 

limited to the unit interval (0, 1), are we to use the positive parameter rule 
by transforming to 0 = m/(1 -m) ,  or the simpler uniform distribution rule 

leading to the (proper) density function dm, or some other transformation 

taking a real-valued parameterization? Equally problematic is the situation 

where we learn that a real-valued parameter is limited to the positive half 

of its parameter space. Then do we use the (improper) conditional distri- 

bution obtained by truncating the (improper) uniform distribution at the 
origin, or do we shift to the positive-valued parameter rule? 

Jeffreys' response (prior to the development of Invariants) was to suggest 

that the dimensions associated with m (which usually is some physical quan- 

tity, not just a number) contain relevant information for determining the 

correct family of alternative parameterizations which are to count as equiv- 

alent, hence the dimensions contain information for selecting the right 

ignorance distribution. I think it is fair to say, however, that the convincing 
justification for Jeffreys' rules came with the applications he offered. By 

showing that many classic statistical tests had Bayesian models only when his 
rules were used to fix the prior 'ignorance' probability, Jeffreys served 
notice that his objective Bayesianism had the resources for reconstructing 
current statistical practice from, what he argued was, a philosophically 

sound base. His successes were especially noteworthy in cases of location 
or scale parameterization, e.g. estimation of a mean or variance from a 

normal distribution, and his account of fiducial inference remains a stan- 
dard for comparison. 11 

A major advance in Jeffreys' program was his theory of Invariants. 12 The 

innovation was to consider not just the quantity of interest, m, but also to 

consider the statistical distribution of the observable random variable which 

is to provide the information about m. That is, to specify an 'ignorance' 
distribution about m one must take into account the statistical model for 
the data which are to be the evidence acquired. Typically the factor of 
interest, m, parameterizes this statistical model into simple statistical hypo- 
theses, i.e., precise direct probabilities. For example, we may be interested 
in the location of the center of mass of a bent coin. Our experiment is to flip 
the coin and record the outcomes: heads-up or tails-up. Based on what we 
know about the flipping process we are prepared to accept a binomial 
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statistical model to model the flipping process, and we accept a functional 
relation between the binomial parameter (of the model) and the factor of 
interest: the center of mass of the coin. That is, the magnitude of the binomial 
parameter corresponds to the location of the center of mass of the coin. 
Making use of the luxury of chance, we see that a posit about the center 
of mass is equivalent to an hypothesis about the chance of the coin's landing 
heads-up. By a simple direct inference we discover observer invariant prob- 
ability for the distribution of the observed random variable: the outcome of 
the flip. For instance, the posit that the center of mass is the geometric 
center of the coin may correspond to the chance statement that the coin is 
fair; so given this simple statistical hypothesis, by direct inference the objective 
probability is 0.5 that the next flip lands heads (tails)-up. Thus, by an appeal 
to the data-to-be-acquired, Jeffreys establishes contact with the second 
heuristic argument (of page 416). 

Invariants are mathematical measures that affix to statistical distributions. 
Their importance for Jeffreys' project is that they provide the ingredients 
in the invariance principle: a rule for identifying 'ignorance' distributions. 
As the name suggests, invariants are invariant over 1-1 differentiable trans- 
formations of the parameters or random variables appearing in a statistical 
distribution. Thus, once the factor of interest becomes tied to the data-to- 
be-acquired by a statistical model, it does not matter to the invariance prin- 
ciple which of the alternative but equivalent parameterizations of this model 
is chosen. 

Applying invariance results in an 'ignorance' distribution that represents 
ignorance about the factor of interest, based on a particular source of infor- 
mation captured in the statistical model. I list a few basic applications of 
Jeffreys' invariance rule: 13 

(a) With a binomial parameter 0 and unit interval parameter space, the 
Jeffreys' 'informationless' prior probability is given by the density 

pd(O) ~ [1/Tr Ox/~ -- O)]dO; 14 

(b) With a location parameter/1 and parameter space consisting of the 
whole real line, the Jeffreys' 'informationless' prior probability is given by 
the (improper) uniform density pd(/~) cc d/t; 

(c) With a scale parameter a and parameter space consisting of the positive 
half of the real line, the Jeffreys' 'informatiordess' prior probability is given 
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by the (improper) density 

pd(a) cc da/a. 

Thus, the earlier successes Jeffreys' scored with his simplified rules for 
generating 'ignorance' distributions are preserved by the invariance prin- 
ciple, and the first of our heuristic arguments (page 416) applies, is 

Following Jaynes, Rosenkrantz adopts a modified invariance principle 
to identify 'informationless' probability. 16 Jeffreys' rule is altered by Jaynes 
as follows: instead of using the mathematical invariants to define an 'ignor- 
ance' distribution, he recognizes particular transformations of the random 
variable and parameter in the statistical model which are experimentally 

meaningful in the process for obtaining the data, and then he finds a rule 
for picking an 'ignorance' distribution that leads to the same probability 
function no matter which parameterization, from among the particular 
transformations deemed experimentally meaningful, is chosen. That is, the 
invariance is over parameterizations that are supposed to represent math- 
ematicaUy and empirically equivalent formulations of the experimental 
process captured in the statistical model. 17 

For example, our experiment may consist of weighing an object O on a 
scale S~ whose readings (on separate weighings) are approximately normally 
distributed about the true weight w o of O plus the bias factor b (for scale 
Sb), with a known variance of, say, 1 unit. That is, repeated measurements 
of O on Sb are modelled by the statistical distribution which is N(0b, 1); 
where 0 b = w o + b. We suppose that the experimenter knows the bias 
factor for any given scale, but does not know the weight of O. What is the 
'ignorance' distribution for the parameter 0 b ? 

In order to apply the modified invafiance rule we examine data that 
might be obtained by weighing O on scales of differing biases. Imagine the 
experimenter uses an unbiased scale, b = 0, and reads a measurement w. 
On a scale with a bias b ' =  5 this measurement corresponds to a reading 
of w + 5. Invafiance requires: 

(i) that we have a rule for obtaining an 'ignorance' distribution for any 
parameter 0b, for any bias b, so that this distribution is identical for each 
b; and 

(ii) an 'ignorance' distribution for each parameter 0b so that with equiv- 
alent data, e.g., w with So and w + 5 with Ss, the resulting probability 
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distributions for the unknown weight w o are the same. The solution for this 

problem is an 0mproper) uniform 'ignorance' with density: 

pd(0b) ~ dO; 

which agrees with Jeffreys' invariance principle applied to a location par- 

ameter. 
In my opening remarks I claimed that the invariance principle (in either 

form) is unacceptable because it conflicts with the second (of the three basic) 
Bayesian postulate(s): conditionalization. Let me outline the reasons for this 

statement, after which an illustration clinches the point. 
The invariance principle, in any of its guises, is a restricted form of the 

ancient Laplacean principle of insuf f icient  reason. That old saw runs: where 
one's knowledge merely limits uncertainty to a set of alternative possibilities, 

by symmetry, each is awarded equal probability. Equally old is the rebuke 
that different partitions of the same set of alternatives leads, by insufficient 
reason, to incompatible probability assignments. For example, in the case of 

a continuously variable parameter, 0, a uniform 'ignorance' distribution over 
0 is inconsistent with a uniform distribution over the re-parameterized 0 3. 

Invariance looks to the data-to-be-acquired and finds a special family of 

parameterizations, picked out by mathematical symmetries in the statistical 

distribution for these data, to which insufficient reason can be applied 

consistently. As discussed before, we note that in a location parameter prob- 

lem symmetries with respect to linear transformations lead to a uniform 

distribution over the alternatives parameterized in location form. 

Now, conditionalization determines the commitments that arise when the 

knowledge base of a belief state is hypothetically enlarged by learning new 

facts. It is a simple point that conditionalization entails an invariance of 

posterior beliefs over alternative sequences of data acquisition. That is, with 

composite evidence, d I & d2, by conditionalization it follows that condition- 
ing first on dl and then on d2 (in two steps), leads to the same distributions 
as are obtained when the data are accepted in the reverse order (or for that 

matter, when the data are accepted in one fell swoop). However, if the bits of 
evidence convey the outcomes of different experiments, and not merely 
repetition of the same experiment, application of the invariance rule may lead 
to violations of conditionalization because the symmetries of the first exper- 
imental process may, when fed through the invariance principle, lead to an 
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'ignorance' distribution that is inconsistent with the 'ignorance' distribution 
that follows if, instead, invariance is applied to the second experiment. Thus, 
depending upon which datum is considered first, the belief state after all the 
evidence is reported has two, precise but mutually incompatible probabilistic 
representations. Of course, it is an important part of scientific methodology 
that hypotheses be subjected to confirmation by a variety of tests. Thus, this 
inconsistency is a real, and not imagined danger. 

An illustration is readily available to us. Suppose we want to investigate 
the unknown volume v of a hollow cube. Our procedures for testing are two- 
fold, We may fill the cube with a liquid of known density, say 1 unit weight/ 
unit volume, and then weigh this quantity of liquid on one of our familiar 
scales, say, the unbiassed one, b = 0. Then readings from this experiment are 
modelled by a simple statistical model, the normal distribution with mean v 
and unit variance: N(v, 1). Invariance requires us to adopt the (improper) 
'ignorance' distribution, uniform for weights of the liquid; hence, the result 
is an 'informationless' prior probability uniform over possible values of v, 
since the true weight of the liquid equals the magnitude of the unknown 
volume. 18 

The second experiment consists in cutting a rigid rod of known density, 
say 1 unit weight/unit length, to the length of an edge of the cube and then 
weighing the rod segment on the scale. Invariance applied to this datum 
leads to an 'ignorance' distribution which is uniform over possible weights of 
the rod; hence the result is an 'informationless' prior probability uniform 
over possible lengths of the cube's edge, since the true weight of the rod 
segment equals the magnitude of the unknown edge length. But the volume 
of the cube v is functionally related to its edge length l as v = 13. So the 
invafiance rule applied to the second experiment leads to an 'ignorance' 
distribution which is uniform over 3x/~. Depending upon which report is 
accepted first a different 'informationless' probability is used and, after all 
the evidence is reported, the upshot is a pair of distinct posterior probability 
functions concerning v. 

The moral of this story is the invariance principle is not successful at 
avoiding the kind of inconsistencies that plague the naive principle of insuf- 
ficient reason, even when rather sophisticated mathematical tools are 
employed to identify the 'relevant' symmetries. The fatal flaw is, I suggest, 
the requirement that ignorance is to be represented by some precise 
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probability function. But since this is the basic tenet by which Jeffreys' 
Bayesian project becomes objective Bayesianism, my evaluation is that it is 
the entire program that founders and not just some incidental feature of 
the plan. 19 

Jaynes' and Rosenkrantz's work on developing objective Bayesianism does 
not stop with the modified version of Jeffreys' invariance rule. A second 
supporting beam (though one which rests on invariance in problems with 
continuously variable unknowns) is Jaynes' strategy for picking out 'partial 
information' distributions through an entropy based measure of uncertainty. 
That is, in rough outline, for problems where there exist appropriate statistical 
constraints on some unknown variable (constraints expressed as expected 
values of select functions of the unknown variable), Jaynes argues there is a 
precise probability function for that unknown variable which accurately 
represents the informational content of the constraints. In other terms, 
given just the information that constraints cl . . . . .  Cn hold of the (distri- 
bution for the) unknown factor x, then (if all goes well, mathematically) 
Jaynes' rule picks out that probability function which maximizes the entropy 

of the distribution for x,  subject to c l , . . . ,  en, as the conditional probability 
p ( x / c  ~ . . . .  , c n ) . 2 ~  

With a discrete variable x, and a finite sample space of m possible states, 
the entropy H associated with a distribution p [x] is given by the formula: 

H(p[x]) = -- ~ {Pi[X] log(pi[x])}, 1 <~i<~m. 
i 

As many readers will notice, H is Shannon's measure of uncertainty of a 
distribution (from communications theory), or the familiar entropy measure 
(from statistical mechanics). Jaynes' rule, then, is to select that distribution 
p*[x] (if one exists) which maximizes H(p[x]) subject to the constraints 
ca . . . .  , Cn, and to call this the objective probability for x, given the (partial 
information) el ,  �9 �9 �9 cn.21 

Shannon's measure is elegantly characterized by three plausible properties 
of uncertainty: 

Sl. H is a continuous function of the pi's. 
$2. When pi[x] = 1/n (all i), H is monotonically increasing in n, the 

sample space. 
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$3. H is additive under decomposition of the sample space. That is, if the 
set ofn possible outcomes with distribution p Ix] is partitioned into m groups, 
m < n, with a derived probability distribution q[x] over the m states, then 
the original uncertainty H(p) equals the sum of (i) the uncertainty over the 
m states H(q), and (ii) the weighted uncertainty (with weightings o o [x] for 
the ]th of the m partitions) for an outcome within any of the m groups, i.e., 
Y,j qi[x] �9 H(p[x / j th  state]), 1 ~<] ~<m. 22 

Maximizing uncertainty by maximizing entropy leads to a version of the 
principle of insufficient reason. For example, the maximum entropy distri- 
bution for a sample space of n possible outcomes is merely the uniform 
distribution, p* [x] = 1/n. To repeat a useful illustration, given by Rosenkrantz 
(p 57), imagine we are faced with a six sided die, of unknown bias, and we 
must identify the probability function that represents our beliefs about the 
outcome of a roll of the die. Insufficient reason stipulates the simple, uniform 
distribution: p(sidei)= 1/6, 1 ~<i~<6. If we add the constraint that the 
expected value of a roll of the die is 3.5 (the average of the six outcomes), 
Jaynes' rule for maximizing entropy also leads to the simple uniform distri- 
bution over the sample space { 1 , . . . ,  6}. 23 

The generalization of Jaynes' rule to problems with continuous distri- 
butions (and probability densities pd[ ]) is not at all trivial and points out 
the primacy of the invariance rule. The straightforward move to extend the 
uncertainty equation to: 

H*(pd[x]) = -- f pd[x] log (pd[x]) dx. 

is unsatisfactory since H* is not stable under trivial changes of variables 
x -+y =f(x) ,  when y is an equivalent random variable, i.e., when the trans- 
formation f is 1-1 and smooth. Jaynes' answer is to derive a measure of 
uncertainty, I-I~, for continuous distributions, which is relativized to an 
'ignorance' distribution m [ ] obtained by invariance:24 

He(pd[x]) = - ' f  pd[x] log (pd[x]/m[x]) dx. 

Because (pd[x]/m[x]) is stable over just those transformations which are 
thought to be mathematically and evidentially relevant to the problem at 

hand (remember that m [ ] is obtained by the invariance principle), H e (unlike 
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H*) satisfies important consistency requirements subject to transformations 

of the random variable x, when those transformations are members of the 
privileged set of experimentally appropriate ones. 

When defending Jaynes' entropy rule, Rosenkrantz acknoMedges several 

objections (p. 77), to which he supplies partial responses and concludes, 

"The m e t h o d s . . ,  which I have sketched seem fully capable of handling the 
difficulties traditionally raised" (p. 81). I believe that his own challenges to 

his position, as presented in the text, fail to strike at the most serious fault 

of the program. In advocating precise probability functions, either through 

the invariance principle or Jaynes' entropy rule (based on invariance), the 

objective Bayesian is driven to violate his own principle of conditionalization. 

We have seen (above) how invariance fails conditionalization. Next, I want 

to show that Jaynes' strategy for using entropy as a measure of uncertainty, 

which is to be maximized subject to known constraints, fares no better. 

I suspect that an evenhanded evaluation of objective Bayesianism must 

concede, at a minimum, that it leads to surprisingly 'informative' distributions 
based on 'limited' evidence. For instance, from the impoverished 'data' that 
a random variable x has an expected value of 3.5 over a sample space of six 
possible outcomes: S = {1, . . . , 6}, the entropy rule dictates the uniform 
distribution, with constant value 1/6th for each member of S. If x models 
the outcome of a roll of a die, then (subject to the information given) the 

entropy rule directs us to act as though we believe the die to be fair. But 
this selection is one of a continuum of distributions consistent with the 
two constraints: (a) a sample space S, and (b) an expectation of 3.5 over S. 

Even if we insist on a distribution symmetric about the expected value (there- 

by paralleling Carnap's symmetry requirement), there remains a continuum 
of solutions. 

The a priorism of the solutions is just as striking in problems with con- 

tinuous distributions, where H c is the uncertainty measure to be maximized. 
Let 0 be the parameter of interest and let us assume an (improper) 'ignorance' 

distribution uniform over the real line, (-- 0% + oo), as might be derived by 

the invariance principle. Hence, m[O] is a constant and the entropy of the 
probability density for O, pd[O] is: 

[.] Hc(pd[O]) = - - f  pd[O] log(pd[O]) dO. 
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Amazingly, this measure has a unique maximum subject to the following 
three constraints. 

Theorem" 2s 

(i) Let pd[0] be defined over the whole parameter space ( -  ~, + oo) and 
let it be a proper density, i.e., 

f+3d[0j , .  

(ii) Let pd[0] have a first moment, i.e., 

f+f0pd[0] d O =  /~. 

(iii) Let pd[0] have a second moment, i.e., 

f_ + ~ 2 (0--/~) pd[0] d0 = o 2. 

Then [*] is maximized by the normal distribution with mean/l and variance 
o 2 , i.e., the N(/I, o 2) distribution. 

Thus, if invariance selects the uniform 'ignorance' distribution for the 
factor 0, and additional evidence E amounts to the constraints (i)-(iii) on the 
distribution pd [0], then Jaynes' rule to maximize the entropy He picks the 
N(~, ~2) distribution as the probability function representing beliefs about 
0, given E. 

My claim is that the entropy rule is unsatisfactory since it directs us to 
act as though we had more information than in fact we do. To follow Jaynes' 
rule we must be prepared to violate conditionalization. I offer the following 
fictional account of an exchange between two Bayesians, J. (a Jaynesian) 
and B. (a non-objective-Bayesian) as my analysis of this claim. The dialogue 
opens with a brief discussion of a Bayesian technique (the device of imaginary 
experiments, due, I believe, to I. J. Good) tha t fills the gap for non-objective- 

Bayesians who must look outside the postulates of their inductive logic for 
an answer to the question of how to completely identify an agent's belief 
state once his knowledge base is determined. There follows my criticism of 
the maximum entropy rule. 

Our story takes place in the dining room of the renowned consulting firm 
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Significant Significance Inc., whose motto "It's safe to accept when we don't 

reject!" (printed boldly at the top of company stationery) is a strong reassur- 

ance to the many satisfied clients. Two colleagues, B. and J. meet for 

lunch a n d . . .  

B. Congratulations J! I saw your long article in the latest issue of the 

JOURNAL. I hear you excited all the top administrators with your new 

'maximizing entropy' techniques. Is is true that you're to give us some lectures 

on it next month? 

J. Well, I'm happy that at last the firm can adopt sound Bayesian methods, 

for now we can explain to the clients that the 'priors' are objectively valid. 

You remember all the fuss when one of the junior consultants told the 

client that our analysis (I think it was on the purity of some chemicals) might 

not stand up in a courtroom test because the opposition could show that by 

using a different prior to represent their opinion about some nuisance factor 

(I think it was a question of the age of some containers), the very data we 

obtained would support their case. We don't have to worry about that any- 

more! My method determines just which probability is objective. 

B. And, if I understand your article, the techniques appeal to factual matters 
only. 

J. Yes. That's the importance of it all. Once the problem has been correctly 
formulated (and here I'm thinking of the requirements for using the invariance 
principle), there is nothing to debate except the accuracy of some calcu- 
lations. No more need of those old fashioned, awkward 'imaginary exper- 
iments' methods for extracting a representation of the client's beliefs.26 

Do you remember those hours spent explaining coherent/incoherent 

betting systems to the poor chaps? I'm surprised they all didn't demand 

their money back when we tried to show them that we could identify a 

probability function for representing their current beliefs by asking a battery 
of questions like, "Would you bet 2:1 that such-and-such happens if the 

imaginary experiment turns out so-and-so?" By the time we finished I wonder 
how many thought the data printed in our reports were just the hypothetical 
outcomes of the imaginary experiments? 

B. I remember the case where the client called us back after we sent him 

our analysis and told us that once he saw the actual experimental outcomes 
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he realized that he hadn't given us the right answers to the questions about 

his views on the imaginary experiments. Of course, he wanted to change his 

responses and have us 'correct' our report. You can guess the to-do that 

followed when I told him that that couldn't be done. There was quite a row 

until he understood the point. 

J. It is hard to see why, after learning the actual results, you can't remember 

your prior opinions. And those who understand that point still have to be 

shown why we can't just substitute their current opinions instead. 

B. That would amount to using the same experimental data twice: once in 

the prior probability as part of their current beliefs, and then again as the 

outcome to be added in by conditionalizing. But that reminds me J., I had a 

question to ask about your paper. I couldn't find a theorem to the effect that 

maximizing entropy and conditionalization always lead to the same posterior 
probability, no matter which procedure is used. For instance, if I calculate a 

distribution p( /dl )by  your rule (where dl reports a constraint) and then 
use conditionalization to arrive at a final distribution p( /dl & d2), updating 
my beliefs to respond to the new evidence d2, will that agree with result of 

applying your entropy rule to the composite evidence dl & d2 ? That is, will 
the maximum entropy distribution, subject to constraints d l &  d2, be the 
same as the posterior probability p( /dl & d2)? 

Z I don't think the two procedures can conflict in the way you suggest they 
might. Anyway, I haven't an example where they do. You see B., the reason 

is that my entropy rule is designed to be used with information that isn't 
appropriate for conditionalization; that is, it can be used with information 

that doesn't fit Bayes' theorem. For instance, how can you use Bayes' the- 

orem with evidence that, say, a distribution has a first and second moment? 
What sort of prior probability is there that a distribution has a second 
moment? 27 Information like that is akin to specifying a statistical model, 
not like data from an experiment. It is the sort of background evidence that 
you might use to determine the nature of an experiment, not the kind of 
evidence you could call 'observable', or assign a probability to for condition- 
ing. That's why I say my method works with 'partial information'. 

If you look at my paper, though, you'll find that I gave an illustration 
where, by suitably rewording the conditioning events, my entropy rule led 
to the same posterior probability as the standard conditionalization principle. 
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B. I can't remember that now, but please rehearse it for me. 

J. The example I gave is very simple. 2s Imagine we are told that a die is 

loaded so that the expected value of a roll is 4.0, instead of the usual 3.5 for 
a fair die. The maximum entropy rule can be used to obtain the following 
distribution over the six outcomes: 

outcome 1 2 3 4 5 6 

probability 0.103 0.123 0.146 0.174 0.205 0.247 

Next, suppose we are told that the die has been rolled and landed with a side 

other than the one-spot showing. We may obtain a conditional distribution 

by using Bayes' theorem to renormalize the first distribution over the restric- 

ted sample space of five outcomes, yielding: 

(**) outcome 2 3 4 5 6 

probability 0.137 0.163 0.194 0.321 0.275 

If, instead of reporting the evidence that a one-spot failed to show, I told you 

that the distribution is of a five-sided die, numbered 2 through 6, with an 

expectation of 4.344 (the expected value of the distribution (**)), then the 
maximum entropy distribution is just (**) again. 

Obviously, I've substituted different versions of the evidence for each 
argument. For conditionalization the new datum is that the one-spot failed 
to show up, which is evidence that is observable. For maximum entropy the 
new constraints are the restricted sample space (1 is deleted) and the increase 

by 0.344 in expected value. This last condition is definitely not observable 
since the bias of the die is theoretical. So you see, B., there is little reason to 
worry about the sort of conflict you posited. Nonetheless, it would be nice 
to have a result establishing the compatibility of the two rules. 

B. We're old friends J., and you certainly know how skeptical I am of pro- 

grams that insist on particular distributions to represent ignorance. My 

worries extend to your methods of treating 'partial information', quite apart 
from your use of the invariance rule. Let me give you an example of how I 
suspect your program gets into trouble. 

Last week Ihad an assignment to determine the weight of some moonrock; 
you remember we're involved in a study to determine the feasibility of lunar 
mining. I used the new scales we received from True-Weight manufacturers. 
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True-Weight made an error with the packing slips for the scales and jumbled 
the instrument numbers with the accuracy ratings, so all I really knew about 
the scale I used was that it was unbiassed with some normal error, o 2. All 
of True-Weights scales share this feature. 

J. Of course you knew something about the accuracy of the scale. It wasn't 
designed for weighing elephants! But I'll grant you that the 'ignorance' distri- 
bution you're about to suggest is a good one for approximating the belief 
state we face here. 

J. Yes, I did work with the familiar 'ignorance' distribution, expecting to 
correct for the 'unknown' accuracy after a phone call to True-Weight. Any- 
way, your invariance principle leads to the very same 'informationless' 
probability function. That is, assuming the data-to-be.acquired are from a 
normal distribution with unknown mean/~ (corresponding to the unknown 
weight of the sample of moonrock) and unknown variance o 2 (corresponding 
to the unknown precision of the scale), we have a location/scale distribution. 
Invariance directs us to the (improper) uniform density d# for ~t and 
the (improper) da/o for o and, since the factors are unrelated, the joint 
'ignorance' density is merely the product dr1" dole. We are interested in 

and temporarily 02 is a nuisance parameter (which will be eliminated after 
the phone call to True-Weight when I learn the accuracy of the scale used). 

Z Thus far the problem is quite ordinary. What difficulties did you encoun- 
ter with the maximum entropy rule? I've used it in this situation very 
often myself. 

B. Here's my question J. Let's imagine I told you that my posterior prob- 
ability distribution for/~ satisfies these three constraints: 

(i) it is defined over the whole real line; 

(ii) it has a first moment of 10.123; and 

(iii) it has a second moment of 10 -4. 

Can't I use your maximum entropy rule to obtain a 'partial information' 
distribution for p, subject to (i)-(iii)? 

J. Yes. In fact the solution is simple. Since the 'ignorance' distribution for 
/a is the (improper) uniform one (note: no other factors appear in the 
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'informationless' probability function for V), subject to (i)-(iii), the 'partial 
information' distribution for/~ is N(10.123, 10-4): the normal distribution 
with first and second moments equal to 10.123 and 10 -4 , respectively. 

B. Next, J., I'll tell you that my posterior distribution for V is based on 10 

separate (statistically independent) measurements of the moonrock sample, 
using the same scale manufactured by True-Weight. The average of the 10 
readings is 10.123. 29 

J. Then, you're telling me that your posterior distribution for ~t was obtained 
by conditionalization from the joint 'ignorance' distribution using data from 

N(/a, o2), and that the sample average $ of these ten values is 10.1237 

B. That's right. But there is one additional fact I've yet to tell you and which 

you must know before you have all the relevant evidence about/a. You s e e . . .  

J. Don't tell me. Let's see whether I can anticipate your little surprise. Since 
the maximum entropy rule identifies the N(10.123, 10 -4) distribution as the 
'partial information' probability function for #, when you also inform me that 

your posterior distribution was obtained by conditionalizing on data from a 
N~ ,  02) distribution, specifically: you had ten observations with an average 
of 10.123, then I can tell you that the missing information on which your 
posterior probability is based is the value of the nuisance factor cr 2 . You must 
have called True-Weight and they told you that the scale has an accuracy 
o2 = 10-3. 

Let me explain. The 'partial information' you gave me is enough to identify 
your posterior distribution for ~. That is, the three conditions (i)-(iii) 

determine your posterior probability for/.t, if my maximum entropy rule is 
used. Then when you tell me that this posterior probability is derived by 
conditionalizing on data from a normal statistical model (10 observations, 

in fact), you fix the likelihood function for the data. Finally, if the sample 

average ~ equals 10.123, I can readily calculate that the normal posterior 
probability N(10.123, 10 -4) was obtained by Bayes' theorem starting from 

the joint 'ignorance' distribution if and only if the total evidence includes 
the missing nuisance value, i.e., the two methods agree just in case o 2 = 10 -3. 

So you see, B., by relying on the mutual compatibility of the two pro- 
cedures: maximum entropy and conditionalization, I am able to work back- 
wards from your posterior distribution, knowing the prior 'informationless' 
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probability and part of the evidence, to f'fll out the missing data that were 
available to you. 

B. That is a pretty account, J., but I still have a shock for you, which con- 
firms my initial suspicions about your program. My posterior probability 
function for/.t is not  the N(10.123, 10 -4) distribution you calculated, but 

instead is given by the Students t-distribution, for t = x /n (2- la ) / s ,  on 9 

degrees of freedom and first and second moments related to the quantities I 

gave you. The missing information I was about to tell you is the sample 
variance of the 10 observations, s 2. The phone call to True-Weight wasn't 

completed until today and I just learned that the scale has a rating of only 
5 x 10-3. 30 

Let's see if we can figure out where your analysis went wrong. We began 

with the familiar 'ignorance' density d/a. do/o, where /a is the parameter 
of interest and cr 2 is the nuisance factor. Then I told you that my posterior 

distribution for/1 satisfied the three conditions (i)-(iii), which it did. You 

applied your entropy rule and identified this posterior probability as the 

normal probability function N(I0.123, 10-4). Finally, when I said that the 

evidence includes a sample of 10 observations from the statistical model 

N(p, a 2) and average ~ = 10.123 you deduced the missing value for the 
nuisance factor, a precision of 10 -3 for the scale. 

J. That is all correct. Clearly, my rule selected the normal distribution as 

the 'partial information' distribution and that is why I arrived at a different 
posterior probability. There is no mystery here. You must have told me 
less about your posterior probability function than I need to fix it by maxi- 
mum entropy considerations. 

B. No, J. It's not that simple. Your 'partial information' distribution not 
only differed from my posterior probability, but it contained much more 
information than mine, even though you derived yours from only a part of 
the total evidence I had. 

If the t-distribution (my posterior probability for t) is the 'partial infor- 
mation' solution based on more than the three conditions (i)-0ii)  I gave (and 
I don't know how to identify Student's distribution by adding constraints to 
the three given), then for fixed first and second moments, your program ranks 
the normal distribution as less informative (greater uncertainty) than the 
t-distribution. But as you see, I can obtain the normal distribution from the 
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t-distribution, in this problem, by adding (not deleting) information, to wit: 

adding the value of the nuisance factor. That you were able to calculate a 
value for o 2 shows this is so. Using conditionalization as the standard, we 
realize that in this problem the t-distribution is based on less information 
than the normal distribution, since I can move from the former to the latter 
by increasing evidence and, I would say, by decreasing uncertainty about 

/a. Your uncertainty measure is at fault here. It ranks the normal and t- 
distributions in reverse order of informational content as they would be 

ranked by conditionalization. 

J. That sounds like a real problem. But how is it that the measure He conflicts 

with conditionalization like that? 

B. I think the answer rests on your assumption that He provides a ranking 
for the 'informativeness' of any distribution, regardless of whether that distri- 

bution depends on other than the factor of interest. My posterior probability 

function for the parameter ~, given by the t-distribution, was obtained by 

conditioning the 'ignorance' distribution on the new data, i.e., the sample 

of 10 weighings, summarized by the jointly sufficient statistics (~, s2). How- 
ever, the t-distribution is a marginal probability function (from the joint 

posterior probability for both factors/~ and a 2) which involves the nuisance 

factor, a 2 , non-trivially. That is, my posterior probability function is not 

independent between g and a 2 , even though the factors were independently 

represented in the 'informationless' prior probability function. Your maxi- 

mum entropy rule treats the distribution for t.t as one free of all nuisance 

parameters since it was free of them in the initial belief state. That is how the 

'ignorance' density m[ ], which is constant, was determined and, there- 

fore, how your rule led to the identification of the normal distribution. 
But by maximizing the entropy of a distribution, subject to constraints 

(i)-(iii), I neglect the uncertainty that results from the interaction between 
the uncertainty I hold about the factor of interest and the uncertainty I 

hold about the related nuisance factor. In effect, He disregards all but the 
parameter of interest. The upshot is a measure of uncertainty that commits 
the agent to more information than he/she may be entitled to. Condition- 
alization does not suppress concern about the nuisance factor and, as a 
result, the two procedures conflict. 

J. Well, B., that does seem to nail down the problem. I guess my project 
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has some serious difficulties with several parameters. It's a shame, but I'll 
have to dust-off those questionaires for the imaginary experiments, at least 
until I come up with a response to your objection. 

III .  SUMMARY 

The objective Bayesian program has as its fundamental tenet (in addition 
to the three Bayesian postulates) the requirement that, from a given knowl- 
edge base a particular probability function is uniquely appropriate. This 
amounts to fixing initial probabilities, based on relatively little information, 
because Bayes' theorem (conditionalization) then determines the posterior 
probabilities when the belief state is altered by enlarging the knowledge base. 
Moreover, in order to reconstruct orthodox statistical procedures within a 
Bayesian framework, only privileged 'ignorance' probability functions 
will work. 

To serve all these ends objective Bayesianism seeks additional principles 
for specifying 'ignorance' and 'partial information' probabilities. H. Jeffreys' 
method of invariance (or Jaynes' modification thereof) is used to solve the 
former problem, and E. Jaynes' rule of maximizing entropy (subject to 
invariance for continuous distributions) has recently been thought to solve 
the latter. I have argued that neither policy is acceptable to a Bayesian since 
each is inconsistent with conditionalization. Invariance fails to give a consist- 
ent representation to the state of ignorance professed. The difficulties here 
parallel familiar weaknesses in the old Laplacean principle of insufficient 
reason. Maximizing entropy is unsatisfactory because the 'partial information' 
it works with fails to capture the effect of uncertainty about related nuisance 
factors. The result is a probability function that represents a state richer in 
empirical content than the belief state targeted for representation. Alterna- 
tively, by conditionalizing on information about a nuisance parameter one 
may move from a distribution of lower to higher entropy, despite the obvious 
increase in information available. 

Each of these two complaints appear to me to be symptoms of the pro- 
gram's inability to formulate rules for picking privileged probability distri- 
butions that serve to represent ignorance or near ignorance. Certainly the 
methods advocated by Jeffreys, Jaynes and Rosenkrantz are mathematically 
convenient idealizations wherein specified distributions are elevated to the 
roles of 'ignorance' and 'partial information' distributions. But the cost that 
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goes w i t h  the  idea l iza t ion  is a v io la t ion  o f  cond i t i ona l i z a t i on ,  and  i f  that is 

the  an te  t h a t  we m u s t  p u t  up  to  b a c k  object ive  Bayes ian ism t h e n  I p ropose  

we l o o k  for  a d i f f e ren t  c and ida t e  to  earn  our  suppor t ,  al 

University o f  h'ttsburgh August, 1978 

N O T E S  

* Roger D. Rosenkrantz, Inference, Method and Decision, Reidel, Dordrecht, 1977. 
i Rosenkrantz, pp. 93 -94 .  On page 94 he writes, 

Now the one thing we always do when we pass from a special case to a 
parametric extension thereof is increase the sheer number of possible 
experimental findings which the theory can accommodate (by the lights 
of a given criterion of fit). We take this feature as definatory and measure 
simplicity by the paucity of possible experimental findings which the 
theory fits. More precisely, by the sample coverage of a theory T for an 
experiment X, I mean the chance probability that the outcome of the 
experiment will fit the theory, a criterion of fit being presupposed. The 
smaller its sample coverage over the range of contemplated experiments, 
the simpler the theory. 

My worries about sample coverage include these problems. 
(A) From a Bayesian perspective, tests of Goodness of Fit of a theory (a kind of 

Significance testing) are difficult to understand. See, for example, M. De Groot, 'Doing 
What Comes Naturally: Interpreting a Tail Area as a Posterior Probability or as a Likeli- 
hood Ratio', ZA.S.A. 68, No. 344 (1973), 966-969;  and S. Spielman, 'The Logic of 
Tests of Significance', Philosophy of Science 41, No. 3 (1974), 211-226.  

(B) In testing a composite hypothesis against an instance of it, there is the question 
of how to represent the composite hypothesis so that the simple one is an instance of 
it. For example, with an 'adjustable' parameter, a Bayesian will be required to admit a 
distribution over the alternative values of this parameter. If the distribution has a chance 
or statistical probability basis, then the simple hypothesis may not be an instance of the 
composite hypothesis, but  a contrary to it, e.g., this is a coin of unknown bias selected 
from an urn with a uniform distribution of biases, versus, this is a fair coin selected 
from an urn of fair coins. If the distribution for the 'adjustable' parameter is merely a 
credal probability, e.g., this is a coin of unknown bias with, say, a uniform 'ignorance' 
probability over possible biases (capturing the ignorance about the origins of the coin), 
then the simple statistical hypothesis, e.g., this is a fair coin, can't be evaluated against 
the composite hypothesis. Bayes' theorem prohibits a comparison since the alternatives 
represent different credal states, whose difference is not limited to a choice between 
empirical hypotheses, started from a common belief state. 

(C) A measure of the paucity of experimental outcomes supportive of a theory 
presupposes a standard of possibility uncontaminated by any of the hypotheses tested. 
What is the nature of this standard and what is presumed by its existence? 
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2 Not every parametric extension of a simple hypothesis increases the "sheer number 
of possible experimental findings which the theory can accommodate (by the lights of a 
given criterion of fit". Depending upon the exact distribution for the alternative biases 
of the coin, we see that outcomes supportive of the hypothesis that it is fair may not fit 
the composite hypothesis. 
s That is, changes in the probability of the composite hypothesis H are governed by 

the average likelihood (in Rosenkrantz's sense of that concept, p. 97) if condition- 
alization holds. 
4 Rosenkrantz, pp. 196-200.  The optional stopping question is: does the evaluation 

of competing statistical hypotheses depend on the rule used to terminate experimen- 
tation, once the observed outcome is fully reported? Since orthodox statistical tech- 
niques are very sensitive to changes in the sample space of possible outcomes (leaving 
fixed the out'come attained), whereas Bayesian inference depends only on the actual 
result (and not what else might have happened), the answer is affirmative for the 
orthodox statistician but negative for the Bayesian. 

Savage's example (used by Rosenkrantz and taken from Savage, L. J. et al., The 
Foundations ofStatisticallnference, Methuen, London, 1962, p. 72) is a simple binomial 
sampling problem, with an unknown bias of either 3/4 or 1/4 for 'success'. The stopping 
rule proposed is one that takes the likelihood ratio between the two simple hypothese s 
as the deciding factor: stop sampling when we see three more successes than failures. 
Say this happens on the ninth trial. Is it plausible to dismiss the stopping rule and act as 
though we decided to draw nine times and stop no matter what the outcomes? 

The Bayesian Solution gives the same result in both cases. If we assume a simple prior 
probability of 0.5 for each hypothesis, then the posterior probability is in the ratio 
27 : 1 that the process is loaded for 'success', i.e., the parameter equals 3/4. 

Rosenkrantz objects to this analysis as being incomplete. His account is that ff we 
'condition upon' the possible outcomes of the experiment then we see that, no matter 
which result occurs, the posterior probability is the same as the prior probability, i.e., 
the experiment is irrelevant when the perverse stopping rule is used, p. 199. 

The technical blunder committed by Rosenkrantz is to assume that the set of poss- 
ible outcomes (up to probability zero) is the same for each hypothesis tested. In fact, 
with the perverse rule: stop when three more successes occur, there is a non-zero prob- 
ability that  the experiment will run forever. (The stopping problem is a simple random 
walk exercise. One formulation is as a discrete Markov process with absorbing barrier. 
In the general case, we have a one dimensional step, beginning at the origin, with a 
chance of p of moving in the positive direction and a chance of q of moving in the 
negative direction, and an absorbing barrier at + n. The probability that the process 
continues without absorption is: (p/q)n i fp  ~< q, and 0 otherwise.) Hence, in our version, 
there is a probability of (1/3) a = 1/27 that the experiment keeps on going, ff the hypo- 
thesis that the process is loaded for 'failures' is true, i.e., i fp  = 1/4. 

By conditioning upon the termination of the experiment, Rosenkrantz suppresses 
all the relevant data, since it then does not matter on which trial the process ends. 

I mention this error only because it strikes me as a familiar one. For example, in the 
so-called Tram Car (or Tank) problem - where one sees a car numbered n and wonders 
how many N there are, the assumption being that the chance of observing car numbered 
n is I/N, n <~N, and 0 otherwise - the usual analysis fails to take into account that a 
car has been observed, or the waiting time to the observation. When this part of the total 
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evidence is included the anomalous conclusion that the likelihood is greatest for the 
hypothesis N = n (and decreases monotonically for increasing N) is no longer correct. 
A family of related problems can be found in A. P. Dawid and J. M. Dickey, 'Likelihood 
and Bayesian Inference from Selectively Reported Data', J.A.S.A. 72, No. 360 (1977), 
845-850. 
5 B. DeFinetti, 'Foresight: Its Logical Laws, Its Subjective Sources', (1937), reprinted 

in H. E. Kyburg and H. E. Smokier, Studies in Subjective Probability, John Wiley and 
Sons, Inc., New York, 1964. L. J. Savage, The Foundations o f  Statistics, 2nd ed., Dover 
Publications, Inc., New York, 1972. 
6 H. Jeffreys, Theory of  Probability, Oxford University Press, Oxford, 1st ed. 1939, 

3rd ed. 1961. An earlier work by Jeffreys also reveals his commitments to objective 
Bayesianism, Scientific Inference, Cambridge University Press, Cambridge, 1 st ed. 1931, 
3rd ed. 1973. Jaynes' work is found in a series of articles, some of which are E. T. Jaynes, 
'New Engineering Applications of Information Theory', in J. L. Bogdanoff and F. Kozin 
(eds.), Proceedings of  the First Symposium on Engineering Applications of  Random 
Function Theory and Probability, John Wiley and Sons, Inc., New York, 1963; 'Foun- 
dations of Probability Theory and Statistical Mechanics', in M. Bunge (ed.), Studies in 
the Foundations Methodology and Philosophy of Science, Vol. 1, Springer-Verlag, New 
York, 1967; 'Prior Probabilities', IEEE Transactions on Systems Science and Cyber- 
netics, SSC-4, No. 3 (1968), 227-241. 

Jeffreys, op. cit. 
8 Jeffreys, Theory of  Probability, 2rid ed., 1948. Also, see his 'An Invariant Form for 

the Prior Probability in Estimation Problems', Proc. Roy Soc. A 186 (1946), 453. 
9 Jeffreys, Theory of  Probability, 1 st ed., 1939, p. 97. 

~o Throughout this paper the question of how to avoid recent marginalization paradoxes, 
attributed to improper distributions, will be sidestepped. I choose to follow the spirit 
of A. Renyi's analysis, in which improper distributions are seen as limits of proper distri- 
butions and, following suggestions made by I. Levi, to respond to the recent paradoxes 
(and older ones as well) by recognizing the failure of countable additivity with improper 
distributions. The crucial link between additivity and the paradoxes is deFinetti's results 
on 'conglomerability', found in his Probability Induction and Statistics, John Wiley and 
-Sons, London, 1972. 
11 Jeffreys' influence on Ian Hacking's noteworthy reconstruction of Fisher's fiducial 
argument is acknowledged in his, Logic of  Statistical Inference, Cambridge University 
Press, Cambridge, 1965, pp. 140 and 147. 
12 An excellent statement of Jeffreys' theory of Invariants is found in V. S. Huzurbazar, 
Sufficient Statistics, Marcel Kekker, Inc., New York, 1976, especially part 1, 'Invariance 
Theory of Prior Probabilities'. 
13 Jeffreys, op. cit., Chapter 3. 
14 This 'ignorance' distribution lies between the (improper) density [1/0(1--0)]  dO, 
and the simple (Bayes) uniform density dO. For additional comments about Jeffreys' 
solution here see R. A. Fisher, Stat~'stical Methods and Scientific Inference, 3rd ed., 
Hafner Press, New York, 1973, pp. 16-17. 
~5 Actually, Jeffreys' rule does not work well with multiparameter distributions. He is, 
of course, aware of this difficulty. Huzurbazar has constructed a modified version of 
Jeffreys' invariance rule that avoids the multiparameter problems faced by Jeffreys, 
however, at the expense of uniqueness of his solutions. See Huzurbazar, op. cir. 



438  T E D D Y  S E I D E N F E L D  

16 Rosenkrantz, pp. 62-77 .  Unfike his presentation, here I discuss invariance before 
Jaynes' entropy rule. Since, for one, Jaynes' policy of maximizing entropy presupposes 
an 'ignorance' distribution obtained by invariance methods, if the distribution involves 
continuous variables, I have ordered by presentation with the evaluation of invariance 
first, 
17 I do not find Jaynes' account of this notion of equivalent formulations perspicacious. 
In particular, I cannot find criteria for judging the claims about experimental equivalence. 
In contrast, I point out that D. A. S. Frazer's theory of group theoretic invariance does go a 
long way towards solving this problem. His answer is, in short, that transformations with 
group invariance properties determine the relevant family of equivalent experimental 
procedures. See his The Structure of  Inference, John Wiley and Sons, New York, 1968. 
18 Since weights are non-negative, this distribution is truncated at the origin. That is, 
the 'informationless' prior probability function is the uniform (improper) distribution 
truncated at the origin. This aspect of the counterexample is inconsequential and can be 
eliminated if desired. 
19 I have relied on this same illustration to point out the incoherence of fiducial infer- 
ence. Again, the problem is the representation of a state of ignorance. See my 'Direct 
Inference, Inverse Inference, and Bayes' Theorem', Journal of  Philosophy, LXXV (1978), 
709-730.  
20 For the result, as stated, the constraints must be interpreted as holding of statistical 
(or chance) probabilities about the variable x. If the constraints are on the credal prob- 
abilities about x then the resulting distribution cannot be thought of as a conditional 
probability (as written in the text). This is because, were the constraints on credal 
probabilities, the conditional probability would be conditional on a statement of another 
credal probability; in effect, the upshot would be to iterate probabilities of probabilities; 
and that is nonsense. (See deFinetfi, op. cir., pp. 189-193,)  In such cases (and I presume 
Jaynes' and Rosenkrantz are anxious to use the entropy rule even when the constraints 
are on credal probabilities), the entropy rule operates at the metaqevel -- for it is in the 
meta-language that the constraints are formulated. The result would be a probability in 
the object language, but  not one in the conditional mode: p(x/Cl, .'.. , Cn).  

21 When no maximum exists, Rosenkrantz calls the problem 'overdetermined', e.g., 
inconsistent constraints, and when several solutions exist the problem is 'underdeter- 
mined', e.g., too few constraints. Examples of these problems are considered in T. Fine's, 
Theories of  Probability, Academic Press, New York, 1973, p. 168. I shall not be con- 
cerned with this problem here. 
22 C. E. Shannon, Bell System Tech. J. 27 (1948), 623. See, also, A. Hobson and 
B.-K. Cheng, 'A Comparison of the Shannon and Kullback Information Measures', 
J. Star. Physics 7, No. 4 (1973), 301-310.  Condition S 3 is suggestive of the multipli- 
cation rule for probability. It falls short of Bayes' theorem, however, as shown in the text. 
23 There is extra information in the second version of this example. That is, according 
to Jaynes' prescription, the information about the magnitudes of the outcomes within 
the sample space, as well as the expected value Of the variable over this set of possible 
outcomes, is significant. A simplified version of the entropy rule applies if all that is 
known is the cardinality of the sample space. If all that is known is that the sample 
space has six members, then maximum entropy dictates a uniform distribution. But 
with the added constraints, the problem is non-trivial. In this illustration, it turns out 
that the new information is irrelevant, i.e., the distribution is the same as if only the 
cardinality of the sample space is known. 
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An important mathematical technique for solving such maximization problems is 
by Lagrange Multipliers. See Courant and Hilbert, Methods of  Mathematical Physics, 
vol. 1, Interscience Publishers, New York, 4th printing, 1963, pp. 164-174.  
~4 It is worthwhile to note that H e is better characterized as a measure of uncertainty 
in Kullback's theory, instead of the association with Shannon's theory. Following 
analysis due to A. Hobson (Hobson and Cheng, op. cir.) we see that KuUback's 1951 
measure of information for discriminating between two distributions pO and p!, given by: 

ik(P~, pO) = ~ p] [xl log (p~ [x]/p~ Ix]), 
i 

can be characterized by five simple properties, the first three of which parallel S~ - S  3 
of Shannon's theory. Moreover, Hobson shows that with discrete distributions Shannon's 
uncertainty H is definable in terms of Kullback's information I k. If we interpret 
ik(p~, pO) as the decrease in uncertainty in going from pO to p~, then H(p 1) is just the 
difference between Ik(P*, p0) and Ik(p I , p0); where p* is the minimum entropy distri- 
bution concentrated on a point of the sample space, and p0 is the maximum entropy 
distribution uniform over the sample space of p~. That is: 

H(p~) = ik(p .  ' pO)_ ik(p~,p0). 

That H c is properly characterized by I k is justified since: 
(a) the difficulties with Shannon's measure for continuous distributions are avoided 

by Kullback's measure; 
(b) Shannon's measure is definable in terms of Kullback's for the discrete case; 
(c) Jaynes' H e is Kullback's measure when m[ ] (of Jaynes' rule) is pO is the 'ignor- 

ance' distribution obtained by invariance. For an additional reference on information 
measures like Kullback's see Chapter IX (Appendix) to A. Renyi, Probability Theory, 
American Elsevier Publishing, New York, 1970. 

Rosenkrantz's opening chapter, Information, provides an introduction to the topic 
of information measures. A point of concern, however, is the shift he makes from 
Shannon information to Fisher information (Section 5 of Chapter 1). I do not  think the 
transition is as simple as the book suggests. In fact, I think the two topics are only 
distantly related. See, for example, the discussions by Kullbaek and Leibler, 'On Infor- 
mation and Sufficiency', Annals of  Math. Stat. 22 (1951), 79 -86 ;  or G. Barnard, 'The 
Theory of Information',  J. Roy. Stat. Soc. B13 (1951), 4 6 - 6 4  (with discussion). 

Lastly, I thank Prof. F. Keffer (Physics, Univ. of Pittsburgh) for bringing Hobson's 
work to my attention. 
~s See, C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley and 
Sons, New York, 1965, p. 131 ; 2nd edition, 1973, pp. 162-163.  
26 I .J .  Good, The Estimation of  Probabilities: An Essay on Modern Bayesian Methods, 
The M.I.T. Press, Cambridge, 1965, pp. 19, 20, and 45. 
2~ Where the constraints are statistical (as opposed to credal - see footnote 20) Bayes' 
theorem may be difficult to apply nonetheless. If the statistical constraints are general 
enough, the 'prior' probability required for Bayes' may be equivalent to a distribution 
over different statistical models. Of course, if the constraints are over credal probabilities, 
Bayes' rules does not apply. 

In the discussion that follows, it is irrelevant which reading is taken for the maximum 
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entropy rule: a rule for fixing conditional probabilities when the constraints are inter- 
preted as holding of chance distributions; or a recta-rule for prescribing probabilities 
over object language variables, given constraints holding at the recta-language level. 
28 Rosenkrantz, pp. 57 -58 .  As formulated in the text and in the book, this problem 
is easier to follow when the constraints are thought of as holding on statistical distri- 
butions for an observable random variable. See footnotes 20 and 27 for clarification. 
29 As formulated in the text, this problem is easier to fotlow when the constraints are 
thought of as holding on credal probabilities. B. reports constraints that hold of his 
posterior probability function for hypotheses about u. 

Since constructing my objection to Jaynes' rule, which the reader will find in the 
analysis given by character B., I have been alerted to the recent work of A. Shimony 
and K. Friedman, 'Jaynes' Maximum Entropy Prescription and Probability Theory', 
J. Star. Physics 3, No. 4 (1971), 381-384;  and Shimony, 'Comment on the Interpretation 
of Inductive Probabilities', J. Star. Physics 9, No. 2 (1973), 187-191 (for which I am 
indebted to I. Levi). It is my impression that the objection raised here is a variant of the 
criticism voiced by Friedman and Shimony. 
30 By the way, s 2 must equal 7.8 • 10 -4. The entropy, according to H e, of the posterior 
distribution for # will increase after learning the value of a 2 if (at least) tr 2 1> 10 -a. 
sa Two interesting alternatives are available. For those willing to part with conditionaliz- 
ation, a more reasonable treatment of ignorance can be found in H. E. Kyburg's program 
of epistemological probability; see his The Logical Foundations of  Statistieal Inference, 
Reidel, Boston, 1974. For others seeking a better characterization of ignorance than is 
found in the Jeffreys/Jaynes program but who (like myself) are unwilling to forgo 
conditionalization, see I. Levi's, 'On Indeterminate Probabilities', J. of  Phil. LXXI, 
13 (1974), 391-418.  


